

Book and homework on your desk.

You will have 10 minutes to read HF.

10 MINUTES

Announcements

Exponents tests returned soon
HF through Chapter 6 must be completed by Monday
Test Wednesday, 2/20

Homework Check

Unit Map

Thursday, 2/7/2019 \rightarrow Transformations of functions
Friday, 2/8/2010 \rightarrow Ms. Barger Absent, Hidden Figures reading and work
Alonday, 2/11/2010 \rightarrow ExponentialGrowth and Decay
Tuesday, 2/12/2019 \rightarrow Compound Interest and Half Life
Wednesday, 2/13/2019 \rightarrow Transformations of Exponentials
Thursday, 2/14/2019 \rightarrow Scientific Notation converting back and forth
Friday, 2/15/2019 \rightarrow Scientific Notation adding and subtracting \& multiplying and
dividing
Monday, 2/18/2019 \rightarrow Scientific Notation word problems
Tuesday, 2/19/2019 \rightarrow Review
Wednesday, 2/20/2019 \rightarrow Exponents Test 2

After yesterday, you should be able to answer...

If a student deposits $\$ 1500$ in the bank and earns an annual interest rate of 8% how much will he have after 15 years?

The population of Barnardsville in 2014 was estimated to be 24,000 people with an annual rate of increase of about 2.4%. Write a function what would give you the estimated total population, y , of Barnardsville.

Quizlet

https://quizlet.com/_642L9y

Exponential Growing
Foldable!

$$
y=a b^{x} \text { where } b>1
$$

Identify as growth or decay:
EXT) $y=2\left(\frac{1}{2}\right)$
EX 2) $y=\frac{1}{2}(.75)^{x}$

$$
E \times 3) y=4\left(\frac{5}{3}\right)^{x}
$$

.75 - decay factor
$\frac{5}{3}$ - growth factor
50% - rate of decay
25% - rate of decay
Formulas
(2) Compound Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

A-amount at time t
p-principal amount
n-\# of times per year the interest is being compounded
r-annual interest rate
t-time in years
A-amount at time
$A_{0}=$ initial amount
$n=$ halt life
Exponential Growth and Decay with Formulas

Compound Interest $\gg \mathbf{A}=\mathbf{P}(\mathbf{1}+\mathbf{r} / \mathbf{n})^{\mathrm{nt}}$

A - Amount at time t
P-Principal amount invested
n - Number of times per year interest is compounded
r - Annual interest rate (written as a decimal)
t - Time in years

Compound Interest $\gg \mathbf{A}=\mathbf{P}(\mathbf{1}+\mathbf{r} / \mathbf{n})^{\mathrm{nt}}$

15. $\$ 4000$ principal earning 6% compounded annually, after 5 yr

Compound Interest $\gg \mathbf{A}=\mathbf{P}(\mathbf{1}+\mathbf{r} / \mathbf{n})^{\mathrm{nt}}$

Example 1: Suppose that when your friend was born, your friend's parents deposited $\$ 200$ in an account paying 4.5% interest compounded quarterly. What will the account balance be after 18 yr ?

Half-Life $\gg \mathbf{A}=\mathbf{A}_{0}(1 / 2)^{t / h}$

A - Amount at time t
A_{0}-Initial Amount
h - Half-life
t-Time

Half-Life $\gg \mathbf{A}=\mathbf{A}_{0}(1 / 2)^{t / h}$

a. lodine-131 is used to destroy thyroid tissue in the treatment of an overactive thyroid. The half-life of iodine-131 is 8 days. If a hospital receives a shipment of 200 g of iodine-131, how much l-131 would remain after 32 days?

Half-Life $» \mathbf{A}=\mathbf{A}_{0}(1 / 2)^{t / h}$

b. Technetium-99 is used for brain scans. If a laboratory receives a shipment of 200 g of this isotope, how much will remain after 24 hours. The half life of Technetium-99 is 6 hours.

Homework

Textbook page 459 \# 18-22
Additionally answer these three questions:

1) Fluorine-21 has a half life of approximately 5 seconds. How much would remain after 1 minute if you started with 100 grams?
2) lodine-131 has a half life of 8 days. How much would remain at the end of 32 days if you started with 4000 grams?
3) The half-life of chromium-51 is 28 days. If the sample contained 510 grams, how much chromium would remain after 56 days? How much would remain after 1 year? How much was present 168 days ago?
