HIDDEN

Book on your desk. Begin reading.

Read in your novels.

Announcements

I really want to give back your Exponents Test 2, but I still have two students who have not taken it yet...

I will give your Polynomials test back ASAP as well, a few students were absent yesterday.

HF Chapters 9-12 are due on Monday. Make sure you are hitting submit on Google Classroom!

Hidden Figures Due Dates

- 9-12 due March 4
- 13-16 due March 11
- 17-20 due March 18
- 21-23 due March $25 \rightarrow$ Book completed!

When we have finished the novel, we will watch the movie!

Unit Map - Factoring

Friday - Factoring by Grouping Monday - Factoring Trinomials $x^{2}+b x+c$ Tuesday - Factoring Trinomials $a x^{2}+b x+c$ Wednesday - Factoring Special Cases Thursday - Hidden Figures Day - Ms. Barger at Math 1 PD
Friday - Factoring Review Monday - Factoring Test

Warm-Up

1. What is the GCF of 35 and 20
2. What is the GCF of 7,15 , and 21
3. Factor: $3 x^{2}-6 x+9$
4. Name two numbers that multiply to be 24 and add to be -11
5. Name two numbers that multiply to be -44 and add to be 7

Factoring by Grouping
 3/1/2019

Remember...

To find the GCF or (
), we have to:

1. See what they ALL have in common (including numbers and variables)
2. Remove what is in common
3. Show what is left
4. Check by redistributing what you removed!

Directions: Find the GCF in each of the following.

1. $2 x^{2}-10 x$
2. $8 x^{2} y^{5}+4 x^{5} y^{3}+12 x^{3} y^{3}$
3. $24 x^{5} y^{2}+16 x^{7} y^{3}+40 x^{3} y^{2}$

Quick Review of Factoring

4. $4 x^{8} y^{4}+2 x^{3} y^{3}+12 x^{5} y^{6}$
5. $27 x^{6} y^{7}+81 x^{2} y^{3}+18 x^{3} y^{4}$
6. $3 x^{3}+12 x^{2}+9 x$
7. $8 x-56 x^{3}$
8. $4 a^{4} b-16 a^{2} b^{2}+4 a b^{4}$
9. $6 a^{3} b^{2}-12 a^{2} b^{3}+18 a b$

Math 1

Factor By Grouning

Factor by Grouping: A way of factoring a polynomial with \qquad terms!

Essential Understanding: polynomials of a degree greater than 2 can be factored

Factor By Grouping

Factor by Grouping: A way of factoring a polynomial with \qquad terms!

Essential Understanding: polynomials of a degree greater than 2 can be factored

IF THERE IS A GCF, YOUR FIRST STEP IS ALWAYS TO PULL IT OUT

Factor by Grouping: A way of factoring a polynomial with \qquad terms!

Essential Understanding: polynomials of a degree greater than 2 can be factored

IF THERE IS A GCF, YOUR FIRST STEP IS ALWAYS TO

PULL IT OUT

Example 1: Factor $3 n^{3}-12 n^{2}+2 n-8$

GCF Method

Step 1: Put parenthesis around first two terms and second two terms.
Step 2: Factor out a GCF if one exists from each group
Step 3: Write your new factors as binomials Step 4: Check your factors by multiplying them together and getting the original problem.

Example 2: Factor $8 \dagger^{3}+14 \dagger^{2}+20 \dagger+35$

Example 3: Factor $12 x^{3}+3 x^{2}+20 x+5$

Got it? Factor each of the following by grouping.

1. $21 x^{3}-28 x^{2}-6 x+8$
2. $6 x^{3}+9 x^{2}+2 x+3$
3. $32 m^{3}+72 m^{2}-80 m-180$
4. $60 a^{5}-72 a^{4}-210 a^{3}+252 a^{2}$
5. $8 t^{3}+36 t^{2}+2 t+9$
6. $21 x^{3}+6 x^{2}-28 x-8$
7. $30 b^{4}-45 b^{3}-10 b^{2}+15 b$
8. $12 e^{4}+18 e^{3}+36 e^{2}+54 e$

IXL Practice - 10 Questions

https://www.ixl.com/math/algebra-1/factor-by-grouping
www.yellkey.com/remember

Homework

Textbook page 519 \#16-21, 23, 25, 43
HF through Chapter 12 due Monday

