What scenario could be modeled by the graph below?

Warm-Up

- A The number of pounds of apples, y, minus two times the number of pounds of oranges, x, is at most 5.
- B The number of pounds of apples, y, minus half the number of pounds of oranges, x, is at most 5.
- C The number of pounds of apples, y, plus two times the number of pounds of oranges, x, is at most 5.
- D The number of pounds of apples, y, plus half the number of pounds of oranges, x, is at most 5.

Unit Map - Geometry

Wednesday - Parallel Lines Cut by a Transversal
Thursday - Proving Lines Parallel and Perpendicular
Friday - Pythagorean Theorem and its Converse
Monday - Distance and Midpoint Formula
Tuesday - Use coordinates to solve geometric problems
Wednesday - NO SCHOOL - TEACHERS MARCH
Thursday - Geometry Review
Friday - Geometry Test

Announcements

Last unit! Geometry!

Geometry test on Friday

Flashback Friday

EOC review will begin soon - The EOC will be on May 30th.

Panera Study Day on May 27 from 2-5 PM

Homework Check - Worksheet

Distance and Midpoint Formula

4/29/2019

Line Segment: Part of a line that has two endpoints. The line segment is named by these two endpoints.
Midpoint: The distance halfway between two points
Segment Bisector: A line that cuts a second line directly in half (located at the midpoint).

Line Segment: Part of a line that has two endpoints. The line segment is named by these two endpoints.

Midpoint: The distance halfway between two points

Segment Bisector: A line that cuts a second line directly in half (located at the midpoint).

The Distance Formula	The Midpoint Formula
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	

Example 1

What is the distance between points (1, 1) and (7, 9)?

Let
$$(x_1, y_1) = (1, 1)$$
 and $(x_2, y_2) = (7, 9)$.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 Use the Distance Formula.

$$=\sqrt{(7-1)^2+(9-1)^2}$$
 Substitute for (x_1, y_1) and (x_2, y_2) .

$$=\sqrt{(6)^2+(8)^2}=10$$
 Simplify.

The Distance Formula

Find the distance between each of the following points.

a)R(5, 1) and S(-3, -3)

b)T(0, 0) and P(12, 8)

c) J (-1, 3) and K (11, 2)

d) A (2, 1) and B (6, 4)

	c)	A tri	angle v a p	e has	vertice to h	ces a nelp.	ıt (1,	3), (2	, -3) c	and (-1, -1). Wh	nat is	the c	appro	xima	te pe	erime	ter o	f the	trian	gle?	-	
-				33		(a) (i)			rs		Sa s			a - 8		(3) ti			(A)			da	-	
																						20		
			,				. 30					357				80					12 1			
1																								
) 	¥ 20				ÿ!	- 10				V:	100					, ye				79	200		
1						87						×				8 - 13					13	i - 5		9
1												33												
												- 8												
1						2			k (5										2. 3		ž i	2 20		
		; ve	Ì			5 1. 5			3: 10			V.					; ye				(y	i vi		
+						3 - 3			V 19			×									ii :			
						20 10						(5)					30					3)		

Discovering The Midpoint Formula: Find the midpoint between each of the following points.

a) E(-2, 6) and F(10, -8) – use the graph to the left.

b) M(11, -2) and N(-9, 13)

c) R is the midpoint of segment \overline{PS} . Q is the midpoint of segment \overline{RS} . P is located at (8, 10) and S is located at (12, -6). What are the coordinates of Q? Draw and label a picture to help.

The *midpoint* of a line segment is the point M on the segment that is the same distance from each endpoint, (x_1, y_1) and (x_2, y_2) . The coordinates of M are given by the *midpoint formula*:

$$M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

The Distance Formula	The Midpoint Formula
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$

Example 2

What is the midpoint of the line segment with endpoints (3, 6) and (-5, 1)?

Let
$$(x_1, y_1) = (3, 6)$$
 and $(x_2, y_2) = (-5, 1)$.

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{3 + (-5)}{2}, \frac{6 + 1}{2}\right)$$
 Substitute for (x_1, y_1) and (x_2, y_2) .
= $\left(-1, 3\frac{1}{2}\right)$ Simplify.

Practice:

Find the midpoint of the line segment joining the two points.

1. (-1, 3), (11, -2)

2. (2, 1), (6, 4)

3. (-4, 1), (11, 9)

Midpoint Formula: Working It Backwards

Split Formula in Two:

- Plug in what you know 2. Solve for x2

- Plug in what you know
- 2. Solve for x2

Find the coordinates of C if B (4, 3) is the midpoint of AC and A is located at (6, -12).

Putting it Together

What is the approximate length of the segment \overline{CD} if \overline{CD} bisects \overline{AB} at C and A (3, 5), B (7, -3), and D (-4, 2)? Draw and label a picture to help.

A line segment has endpoints J(2, 4) and L(6, 8). The point K is the midpoint of \overline{JL} . What is an equation of a line perpendicular to \overline{JL} and passing through K?

A
$$y = -x + 10$$

B
$$y = x - 10$$

$$C y = x + 2$$

$$D \quad y = x - 1$$

R is the midpoint of segment PS. Q is the midpoint of segment RS. 34

P is located at (8, 10), and S is located at (12, 6). What are the coordinates of Q?

(4, 2)A

В

D

 $(11, ^-2)$ C

(10, 2)

(2, -8)

Homework

Distance and Midpoint Worksheet posted on my website