A statistician collected the following data to explore the relationship between two variables, x and y.

\boldsymbol{x}	\boldsymbol{y}
2.3	11.0
4.2	16.5
5.1	19.2
6.4	23.1
8.2	24.3
8.5	29.5

The statistician performed a linear regression and also plotted the residuals.

- Based on the residual plot, the statistician decided to exclude one data point.

A $(2.3,11.0)$
B $\quad(4.2,16.5)$
C $\quad(6.4,23.1)$
D $\quad(8.2,24.3)$

- The statistician then performed linear regression on the set of remaining data points.
- The result was that the new linear model fit the remaining data more closely than the original model fit the original data.

Which data point did the statistician exclude?

Three systems of equations are shown in the table below.
Place (click and drag) the choice that describes the number of solutions of each system into the appropriate column in the table below.

Assignments:

Math One-Pagers are due today!
Four required for everyone for a formal grade Seven will exempt your lowest FBF
Ten will replace your lowest FBF with a 10/10
Last FBF is due today! Code FBF4
EOC on May 30th

Announcements

Today - Chromebooks stay at school
May 22nd - NO HOMEWORK
Textbooks due Friday, May 24
Hidden Figures books due Friday, May 24
Calculator collection on Friday, May 24
Anything forgotten on Friday, May 24th can be turned in on
Tuesday, May 28th

EOC Review Day 11

Unit 13-14 Review

5/20/2019

Unit 13
 Factoring

Factor by Grouping: A way of factoring a polynomial with \qquad terms!

Essential Understanding: polynomials of a degree greater than 2 can be factored

IF THERE IS A GCF, YOUR FIRST STEP IS ALWAYS TO

 PULL IT OUT

Example 2: Factor $8 \dagger^{3}+14 \dagger^{2}+20 \dagger+35$

How to Factor a Trinomial in the Form ax ${ }^{2}+b x+c$

Step 1: Multiply your first term (a) and your last term (c)
Step 2: Set up your T chart (what multiplies to "ac" that adds to "b
Step 3: Replace the original (b) term with the two numbers you just came up with
Step 4: Factor by grouping
Step 5 Factor out another GCF if one exists
Step 6: FOIL to check work! (Don't forget your GCF in front)!
What is the factored form of $x^{2}+8 x+15$?
List the pairs of factors of 15 . Identify the pair that has a sum of 8 .

Factors of 15	Sum of Factors
1 and 15	16
3 and 5	$8 \boldsymbol{V}$

$x^{2}+8 x+15=(x+3)(x+5)$
Check $\quad(x+3)(x+5)=x^{2}+5 x+3 x+15$

$$
=x^{2}+8 x+15
$$

Practice: $r^{2}+11 r+24$

Practice: $y^{2}-6 y+8$

$$
\begin{aligned}
& 6 x^{2}+22 x, 7 \quad \begin{array}{l}
x \rightarrow 42 \\
+\rightarrow 23
\end{array} \quad 21,2 \\
& 6 x^{2}+21 x+1+7 \\
& 3 x(2 x+7)+1 \\
& (3 x+1)(2)
\end{aligned}
$$

How to factor anything

Unit 14

Quadratics

A quadratic function is a type of nonlinear function that models certain situations where the rate of change is not constant. The graph of a quadratic function is a symmetric curve with the highest or lowest point corresponding to the maximum or minimum value.

Key Concept Standard Form of a Quadratic Function

A quadratic function is a function that can be written in the form $y=a x^{2}+b x+c$, where $a \neq 0$. This form is called the standard form of a quadratic function.
Examples $y=3 x^{2}$

$$
y=x^{2}+9
$$

$$
y=x^{2}-x-2
$$

Important Vocabulary

Y-Intercept \rightarrow Where the graph crosses the y-axis
X-Intercept (root, zero, solution) \rightarrow Where the graph crosses the x-axis. These are the solutions to the quadratic. They are also called roots or zeros of the equation.

Vertex \rightarrow The highest or lowest point of the parabola
Axis of Symmetry \rightarrow The line that divides the parabola into two matching halves. Each side matches exactly

Parabola \rightarrow The graph of the quadratic function which is in the shape of a U

Axis of Symmetry

AOS Formula:

-b
2a

Key Concept Graph of a Quadratic Function

The graph of $y=a x^{2}+b x+c$, where $a \neq 0$, has the line $x=\frac{-b}{2 a}$ as its axis of symmetry. The x-coordinate of the vertex is $\frac{-b}{2 a}$.

Use the axis of symmetry to graph

What is the graph of the function $y=x^{2}-6 x+4$?
Step 1: Find the axis of symmetry
Step 2: find two other points on the graph
Step 3: Graph the vertex and the points you found in Step 2. Reflect these points across the axis of symmetry

Example 1: Find the vertex and the axis of symmetry for each function.
a) $y=-2 x^{2}+4 x-9$
b) $y=x^{2}-10$
C) $y=x^{2}+4 x-1$

```
a= -2
b=4
c= -9
```

AOS $=\frac{-b}{2 a}=\frac{-4}{2 \cdot-2}$
$x=1$ so x coordinate of the vertex is 1

```
\(Y=-2\left(1^{2}\right)+4(1)-9\)
    \(=-7\)
```

$\therefore(1,-7)$ is the vertex

$$
\begin{aligned}
& x^{2}+2 x-1=2 \\
& x^{2}+2 x-3=0 \\
& x^{2}+2 x-3=y \\
& \operatorname{AOS} \frac{-6}{20} \quad \frac{-2}{2(1)}=-1 \quad x=-1 \\
& (-1)^{2}+2(-1)-3 \\
& 1-2-3=-4
\end{aligned}
$$

a. $m^{2}-5 m-14=0$
b. $\mathrm{p}^{2}+\mathrm{p}-20=0$
c. $2 a^{2}-15 a+18=0$

The solutions of a quadratic equation of the form $a x^{2}+b x+c=0$ are given by the following formula:

The Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Key Concept Quadratic Formula

Algebra

If $a x^{2}+b x+c=0$, and $a \neq 0$, then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example
Suppose $2 x^{2}+3 x-5=0$. Then $a=2, b=3$, and $c=-5$. Therefore

$$
x=\frac{-(3) \pm \sqrt{(3)^{2}-4(2)(-5)}}{2(2)}
$$

What are the solutions of $x^{2}-8=2 x$? Use the quadratic formula.

$$
\begin{array}{ll}
x^{2}-2 x-8=0 & \text { Write the equation in sta } \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \text { Use the quadratic formu } \\
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-8)}}{2(1)} & \text { Substitute } 1 \text { for } a,-2 \mathrm{fa} \\
x=\frac{2 \pm \sqrt{36}}{2} & \text { Simplify. } \\
x=\frac{2+6}{2} & \text { or } \quad x=\frac{2-6}{2}
\end{array} \begin{aligned}
& \text { Write as two equations. } \\
& x=4
\end{aligned} \quad \text { or } \quad x=-2 \quad l \begin{aligned}
& \text { Simplify. }
\end{aligned}
$$

What are the roots of the equation $x^{2}-4 x=-4$? Use the quadratic formula to solve.
7. $2 x^{2}+5 x+3=0$
10. $3 x^{2}-41 x=-110$
13. $3 x^{2}+19 x=154$
8. $5 x^{2}+16 x-84=0$
11. $18 x^{2}-45 x-50=0$
14. $2 x^{2}-x-120=0$
9. $4 x^{2}+7 x-15=0$
12. $3 x^{2}+44 x=-96$
15. $5 x^{2}-47 x=156$

Quadratic equations can have two, one, or no real - number solutions
You can determine how many real - number solutions it has by using the discriminates.

The discriminant is the expression under the radical sign in the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

the discriminant

The discriminant of a quadratic equation can be positive, zero, or negative.

Key Concept Using the Discriminant

Discriminant	$b^{2}-4 a c>0$	$b^{2}-4 a c=0$	$b^{2}-4 a c<0$
Example	$x^{2}-6 x+7=0$ The discriminant is $(-6)^{2}-4(1)(7)=8$, which is positive.	$x^{2}-6 x+9=0$ The discriminant is $(-6)^{2}-4(1)(9)=0$	$x^{2}-6 x+11=0$ The discriminant is $(-6)^{2}-4(1)(11)=-8$, which is negative.
Number of Solutions	There are two realnumber solutions.	There is one realnumber solution.	There are no realnumber solutions.

How many solutions?

29. $x^{2}-2 x+3=0$
30. $x^{2}-15=0$
31. $x^{2}+7 x-5=0$
32. $x^{2}+2 x=0$
33. $x^{2}+3 x+11=0$
34. $9 x^{2}+12 x+4=0$

Vertex Form of a Quadratic

SWBAT graph a quadrafic equation in vertex form.

Where ($\mathrm{h} . \mathrm{k}$) is the vertex

The vertex form of a quadratic function is given by
$f(x)=a(x-h)^{2}+k$, where (h, k) is the vertex of the parabola.

Unit 15

Statistics - Tuesday

Unit 16

Geometry - Tuesday

Homework

1. Get rid of zeros in PowerSchool
2. Study
