Exponents Test 2 Study Guide

Exponential Form and Simplifying Powers

- What is the base?
- What is the exponent?
- What is the coefficient?
- Simplify -2^{4}
- Simplify $3^{2} u^{6}$

Evaluating Expressions

- Find $x-y\left(z \cdot y^{z}\right)$ for $\mathrm{x}=20, \mathrm{y}=4, \mathrm{z}=2$
- Find $x \div y^{z}$ for $\mathrm{x}=9, \mathrm{y}=3, \mathrm{z}=2$

Zero and Negative Exponents

- Any number raised to the zero power always equals: \qquad
- $(-5)^{0}$
- -3^{0}
- $3 b^{0}$
- Simplest form only has (circle one: Positive or Negative?) exponents.
- For any nonzero number a and integer $\mathrm{n}, \mathrm{a}^{-\mathrm{n}}=\frac{1}{a^{n}}$
- $a^{-2} b^{4}$
- $\frac{a^{3} b^{-1}}{d^{-4}}$
- Additional negative exponent practice - click HERE
- Additional zero and negative exponent help and practice problems - click HERE

Multiplying and Dividing Powers

- Multiplying powers with the same base \rightarrow \qquad the exponents
- Dividing powers with the same base \rightarrow \qquad the exponents
- $5^{4} \cdot 5^{3}$
- $5 h y^{-3} 7 h^{-5} y^{3}$
- $\frac{6^{9}}{6^{4}}$
- $\frac{4 d^{-2} g^{5}}{2 d^{6} g^{-4}}$

Power of a Power

- Power to a power you \qquad the exponents
- $\left(9^{4}\right)^{5}$
- $\left(3 m^{4}\right)^{3}$
- $\left(\frac{3 a^{-2}}{4 b^{2}}\right)^{-3}$
- Basic Exponential Function: $y=a b^{x}$
- Transformations: $\mathrm{y}=a \mathrm{~b}^{(\mathrm{c}-\mathrm{h})}+\mathrm{k}$
- What happens if a is negative?
- What happens if k is positive? What if it is negative?
- What happens if $|\mathrm{a}|>1$? What if $|\mathrm{a}|<1$
- What happens if h is added? What if it is subtracted?
- What happens if c is negative?
- What happens if $|\mathrm{b}|<1$?
- What happens if $|\mathrm{c}|>1$? What if $|\mathrm{c}|<1$?
- If $\mathrm{y}=2^{\mathrm{x}}$ is the parent function, how will $\mathrm{y}=-2^{\mathrm{x}}-2$ compare? (What translations will you need to do? Be sure to put them in order!)
- Practice transforming exponential functions - click HERE

Exponential Growth and Decay

- When $\mathrm{y}=\mathrm{ab}^{\mathrm{x}}$ and $\mathrm{b}>1$, the equation represents (Exponential Growth or Exponential Decay)
- When $\mathrm{y}=\mathrm{ab}^{\mathrm{x}}$ and $\mathrm{b}<1$, the equation represents (Exponential Growth or Exponential Decay)
- Does $y=2(1 / 3)^{\times}$represent growth or decay? What is the (growth/decay) factor? What is the rate of (growth/decay)?
- Compound Interest Formula:
- Half-Life Formula:
- Compound Interest Practice - click HERE
- Half-Life Practice - click HERE

Scientific Notation

- A number written is in scientific notation if it is in the form $c \times 10^{n}$ where c is \qquad and n is $\mathrm{a}(\mathrm{n})$ \qquad .
- Is $.32 \times 10^{3}$ written in scientific notation?
- In order to add or subtract numbers in scientific notation, the exponents must be
\qquad .
- In order to multiply or divide numbers in scientific notation, you use the
\qquad property and the \qquad property to group the decimal part and apply exponent rules.
- Practice converting between scientific notation and standard form - click HERE
- Practice multiplying and dividing scientific notation - click HERE
- Practice adding and subtracting scientific notation - click HERE

