## Happy Monday! I am so glad you are here today.

1. Write a relation that is a function
2. Write an equation that is linear
3. Write a chart that is nonlinear
4. Create a table for the function rule $y=2 x+3$
5. Graph the function rule from problem 4's chart
6. Describe the difference between continuous and discrete.

## Unit 4 Test $\rightarrow$ Thursday

How will test corrections for the Unit 4 Test work, considering the end of the quarter.

## Homework check: Math 1 - Page 265 \# 9.21 odd and 26

## 4th Block - Review Thursday’s Homework math 1- Page 257 \#18-20, 22-23, 29-33

## Begin class with stations

Posted on my website under the notes section.
Work with your groups to complete all stations.
When you are done, we will talk about them as a class!

## Click HERE for the stations!

## Pause here after completing the stations!

We will move on as a class.

A function is a a set of ordered pairs in which no two ordered pairs have the same first coordinate as the second coordinate

How can we determine if a relation is a function? 1. Each $x$ value should only have one $y$ value a. AKA each input should only have one output 2. Does it pass the vertical line test?

$$
\boldsymbol{\Delta}\{(-4,2),(-3,1),(0,-2),(-4,-1),(1,2)\}
$$



## The domain is all x values The range is all $y$ values

Relations can be written in different ways

- Charts
- Mapping
- Graphing
- Ordered pairs

Mapping is the new one for today... let's make sure we understand it!

## Function Notation

You have seen functions represented as equations involving $x$ and $y$, such as $y=-3 x+1$.
Below is the same equation written using function notation.
$f(x)=-3 x+1$
Notice that $f(x)$ replaces $y$. It is read "f of $x$ ". The letter $f$ is the name of the function, not a variable.

## Function Notation (continued)

Function notation is used to emphasize that the function value $f(x)$ depends on the independent variable $x$. Other letters can be used such as $g$ and $h$.

Ex: The function $w(x)=250 x$ represents the number of words $w(x)$ you can read in $x$ minutes. How many words can you read in 8 minutes?
$\mathrm{f}(\mathrm{g}(\mathrm{x}))$
$f(x)=3 x+2 \quad g(x)=-2 x+4$

Find $f(g(2))$

Find $g(f(-1))$

## Classwork: Page 271 \#8, 10, 12-16, 18-24 even, 32

Identify the domain and range of each relation. Use a mapping diagram to
See Problem 1. determine whether the relation is a function.
8. $\{(3,7),(3,8),(3,-2),(3,4),(3,1)\}$
9. $\{(6,-7),(5,-8),(1,4),(7,5)\}$
10. $\{(0.04,0.2),(0.2,1),(1,5),(5,25)\}$
11. $\{(4,2),(1,1),(0,0),(1,-1),(4,-2)\}$

Use the vertical line test to determine whether the relation is a function.
See Problem 2.
12.

13.

14.

16. Physics Light travels about $186,000 \mathrm{mi} / \mathrm{s}$. The function $d(t)=186,000 t$ gives the distance $d(t)$, in miles, that light travels in $t$ seconds. How far does light travel in 30 s ?

## Classwork: Page 271 \#8, 10, 12-16, 18-24 even, 32

Find the range of each function for the given domain.
18. $f(x)=2 x-7 ;\{-2,-1,0,1,2\}$
19. $g(x)=-4 x+1 ;\{-5,-1,0,2,10\}$
20. $h(x)=x^{2} ;\{-1.2,0,0.2,1.2,4\}$
21. $f(x)=8 x-3 ;\left\{-\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}\right\}$

Find a reasonable domain and range for each function. Then graph the function.
22. Fuel A car can travel 32 mi for each gallon of gasoline. The function $d(x)=32 x$ represents the distance $d(x)$, in miles, that the car can travel with $x$ gallons of gasoline. The car's fuel tank holds 17 gal .
23. Nutrition There are 98 International Units (IUs) of vitamin D in 1 cup of milk. The function $V(c)=98 c$ represents the amount $V(c)$ of vitamin $D$, in IUs, you get from $c$ cups of milk. You have a 16 -cup jug of milk.

Determine whether the relation represented by each table is a function. If the relation is a function, state the domain and range.

24. | $x$ | 0 | 3 | 3 | 5 |
| ---: | ---: | ---: | ---: | ---: |
| $y$ | 2 | 1 | -1 | 3 |
25. 

| $x$ | -4 | -1 | 0 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | -4 | -4 | -4 | -4 |

## Homework:

Test corrections due Friday
Create a poster on a piece of computer paper (not large!) Topic options:

- Graphing a function rule by using a chart
- Determining function/not a function from a chart, equation, graph, or map
- Determining linear/nonlinear from a chart, equation, graph, or map
- Function notation

