Warm-Up

On a piece of paper, write down everything you know about quadratics so far

Announcements

Complete Hidden Figures by next Monday! Reading guides will be posted today
Return graded work

Hidden Figures Due Dates

- 17-20 due tonight!
- 21-23 due March $25 \rightarrow$ Book completed!

When we have finished the novel, we will watch the movie!

Unit Map - Quadratics

Fuesday, 3/12/2019-StandardForm of Graphing Quadraties
Wednesday, 3/13/2019_Half Day, HF Reading Day with Substitute Ms. Krupski
Fhursday, 3/14/2019-Quadratic Functions
Friday, 3/15/2019 Solving Quadratic Equations by Graphing with Substitute Ms. Mitehell
Monday, 3/18/2019 - Solving Quadratic Equations by Factoring
Tuesday, 3/19/2019 - Review activities
Wednesday, 3/20/2019 - The Quadratic Formula
Thursday, 3/21/2019 - Vertex Form
Friday, 3/22/2019- Quadratic Word Problems
Monday, 3/25/2019 - Word Problems Continued (NC Check-Ins) with Substitute Ms. Mitchell
Tuesday, 3/26/2019-Systems of Linear and Quadratic Equations
Wednesday, 3/27/2019 - Review Day
Thursday, 3/28/2019 - Test Day
Friday, 3/29/2019 - Begin watching Hidden Figures

The Quadratics Test will be the first grade of the 4th

Quarter.

Let's discuss what happened on Friday

HERE

Solving Quadratic

 Equations by Factoring3/18/2019

Kate's Math Lesson

HERE

Solving by Factoring

SWBAT solve quadratic equations by factoring.

Essential Understanding You can solve some quadratic equations, including

 equations where $b \neq 0$, by using the Zero-Product Property.
Property Zero-Product Property

For any real numbers a and b, if $a b=0$, then $a=0$ or $b=0$.
Example If $(x+3)(x+2)=0$, then $x+3=0$ or $x+2=0$.

SWBAT solve quadratic equations by factoring.

Example 1: What are the solutions of the equation $(4 t+1)(t-2)=0$

a. $(x+1)(x-5)=0$
b. $(2 x+3)(x-4)=0$
c. $(2 y+1)(y+14)=0$
d. $(7 n-2)(5 n-4)=0$

Example 2: What are the solutions of the equation $x^{2}+8 x+15=0$

a. $m^{2}-5 m-14=0$
b. $\mathrm{p}^{2}+\mathrm{p}-20=0$
c. $2 a^{2}-15 a+18=0$

Example 3: What are the solutions of $4 x^{2}-21 x=18$

Photography You are constructing a frame for the rectangular photo shown. You want the frame to be the same width all the way around and the total area of the frame and photo to be $315 \mathrm{in}^{2}$. What should the outer dimensions of the frame be?

Photography You are constructing a frame for the rectangular photo shown. You want the frame to be the same width all the way around and the total area of the frame and photo to be $315 \mathrm{in} .^{2}$. What should the outer dimensions of the frame be?

Ellumer
Practice: Suppose in the previous problem the total area is $391 \mathrm{in}^{2}$

You are making a rectangular table. The area of the table should be $10 \mathrm{ft}^{2}$. You want the length of the table to be 1 ft shorter than twice its width. What should the dimensions of the table be?

Jason has a patio of uniform width around the perimeter of his rectangular pool. The pool measures 22 ft by 12 ft . If the area of the pool and the patio is $504 \mathrm{ft}^{2}$, what is the width of the patio?

Your turn: Solveeach of the following by factoring. Check your solutions by graphing.

1. $x(x+4)=0$
2. $(2 x+1)(3 x-4)=0$
3. $x(3 x+9)=0$
4. $x^{2}-64=0$
5. $-x^{2}=-121$
$3 x^{2}-81=2$ 冋 2
6. $-3 x^{2}=21 x+36$
7. $x^{2}-12 x+36=0$
8. $x^{2}-2 x=15$
9. $2 x^{2}-18 x=-24 x$
10. $5 x^{2}+32 x=-28 x$

A box shaped like a rectangular prism has a volume of $280 \mathrm{in}^{3}$. Its dimension are 4 in . by $(\mathrm{n}+2)$ in. by $(\mathrm{n}+5)$. Find n .

Homework

Page 558 \#20-25, 27, 36

