Warm-Up

- 1. Check classwork/homework answers around the room
- 2. Solve the following by factoring:

a)
$$x^2 - x = 6$$

b) $5x^2 + 11x + 6 = 0$

c)
$$8x = x^2$$
 d) $x^2 = 100$

Hidden Figures Due Dates

• 21-23 due March 26 (TUESDAY) \rightarrow Book completed!

When we have finished the novel, we will watch the movie!

Unit Map - Quadratics

Tuesday, 3/12/2019 - Standard Form of Graphing Quadratics Wednesday, 3/13/2019 - Half-Day, HF Reading Day with Substitute Ms. Krupski Thursday, 3/14/2019 - Quadratic Functions Friday, 3/15/2019 - Solving Quadratic Equations by Graphing with Substitute Ms. Mitchell Monday, 3/18/2019 - Solving Quadratic Equations by Factoring Tuesday, 3/19/2019 - Review Day Wednesday, 3/20/2019 - The Quadratic Formula Thursday, 3/21/2019 - Vertex Form Friday, 3/22/2019 - Quadratic Word Problems Monday, 3/25/2019 - Word Problems Continued (NC Check-Ins) with Substitute Ms. Mitchell Tuesday, 3/26/2019 - Systems of Linear and Quadratic Equations Wednesday, 3/27/2019 - Review Day Thursday, 3/28/2019 - Test Day The Quadratics Test will be Friday, 3/29/2019 - Begin watching Hidden Figures the first grade of the 4th

Quarter.

Solving Quadratic Equations with the Quadratic Formula

3/20/2019

The solutions of a quadratic equation of the form $ax^2 + bx + c = 0$ are given by the following formula:

Key Concept Quadratic Formula

Algebra

ke note

If $ax^2 + bx + c = 0$, and $a \neq 0$, then

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example

Suppose $2x^2 + 3x - 5 = 0$. Then a = 2, b = 3, and c = -5. Therefore $x = \frac{-(3) \pm \sqrt{(3)^2 - 4(2)(-5)}}{2(2)}$ Here's Why It Works If you complete the square for the general equation $ax^2 + bx + c = 0$, you can derive the quadratic formula.

Step 1 Write
$$ax^2 + bx + c = 0$$
 so the coefficient of x^2 is 1.

 $ax^2 + bx + c = 0$ $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$ Divide each side by a.

Complete the square. Step 2

This step uses the

in Lesson 10-2.

 $x^2 + \frac{b}{a}x = -\frac{c}{a}$ Subtract $\frac{c}{a}$ from each side. $x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2}$ Add $\left(\frac{b}{2a}\right)^{2}$ to each side. $\left(x + \frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2}$ Write the left side as a square. $\left(x + \frac{b}{2a}\right)^2 = -\frac{4ac}{4a^2} + \frac{b^2}{4a^2}$ Multiply $-\frac{c}{a}$ by $\frac{4a}{4a}$ to get like denominators. $\left(x+\frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{a^2}$ Simplify the right side. **Step 3** Solve the equation for x. $\sqrt{\left(x+\frac{b}{2a}\right)^2} = \pm \sqrt{\frac{b^2-4ac}{4a^2}}$ Take square roots of each side. $x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$ Simplify the right side. property $\sqrt{\frac{m}{n}} = \frac{\sqrt{m}}{\sqrt{n}}$, $x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$ Subtract $\frac{b}{2a}$ from each side. which you will study $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Simplify.

If you are interested in why the quadratic formula works, please see this

What are the solutions of $x^2 - 8 = 2x$? Use the quadratic formula.

$$x^{2} - 2x - 8 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(1)(-8)}}{2(1)}$$

$$x = \frac{2 \pm \sqrt{36}}{2}$$

Write the equation in standard form. Use the quadratic formula.

Substitute 1 for a, -2 for b, and -8 for c.

Simplify.

 $x = \frac{2+6}{2}$ or $x = \frac{2-6}{2}$ Write as two equations.x = 4orx = -2Simplify.

What are the solutions of $2x^2 + 3x = 5$? Use the quadratic formula to solve.

What are the roots of the equation $x^2 - 4x = -4$? Use the quadratic formula to solve.

7. $2x^2 + 5x + 3 = 0$ **10.** $3x^2 - 41x = -110$ **13.** $3x^2 + 19x = 154$

- **8.** $5x^2 + 16x 84 = 0$
- **11.** $18x^2 45x 50 = 0$
- **14.** $2x^2 x 120 = 0$

- **9.** $4x^2 + 7x 15 = 0$
- **12.** $3x^2 + 44x = -96$
- **15.** $5x^2 47x = 156$

A batter strikes a baseball. The equation $y = -0.005x^2 + 0.7x + 3.5$ models its path, where *x* is the horizontal distance, in feet, the ball travels and *y* is the height, in feet, of the ball. How far from the batter will the ball land? Round to the nearest tenth of a foot. There are many methods for solving a quadratic equation.

Method	When to Use		
Graphing	Use if you have a graphing calculator handy.		
Square roots	Use if the equation has no x-term.		
Factoring	Use if you can factor the equation easily.		
Completing the square	Use if the coefficient of x^2 is 1, but you cannot easily factor the equation.		
Quadratic formula	Use if the equation cannot be factored easily or at all.		

Which method(s) would you choose to solve each equation? Explain your reasoning.

 $(x^2 - 9) = 0$

 $x^2 - x - 30 = 0$

 $x^2 - 5x + 3 = 0$

 $G 6x^2 + 13x - 17 = 0$

- Square roots; there is no x-term
- Factoring; the equation is easily factorable
 - Quadratic formula, graphing; the equation cannot be factored
 - Quadratic formula, completing the square, or graphing; the coefficient of the x^2 -term is 1, but the equation cannot be factored
- $\boxed{16x^2 50x + 21} = 0$ Quadratic formula, graphing; the equation cannot be factored easily since the numbers are large

Quadratic equations can have two, one, or no real - number solutions

You can determine how many real - number solutions it has by using the discriminates.

The discriminant is the expression under the radical sign in the quadratic formula.

The discriminant of a quadratic equation can be positive, zero, or negative.

Discriminant	$b^2 - 4ac > 0$	$b^2 - 4ac = 0$	$b^2 - 4ac < 0$
Example	$x^{2} - 6x + 7 = 0$ The discriminant is $(-6)^{2} - 4(1)(7) = 8,$ which is positive.	$x^{2} - 6x + 9 = 0$ The discriminant is $(-6)^{2} - 4(1)(9) = 0.$	$x^{2} - 6x + 11 = 0$ The discriminant is $(-6)^{2} - 4(1)(11) = -8$ which is negative.
	2 ¹ <i>y</i> x 0 3 x	$\begin{array}{c} 4 \\ 2 \\ 0 \\ 7 \\ 2 \\ 4 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	$\begin{array}{c} 4 \\ 2 \\ \hline 0 \\ \hline 2 \\ \hline 0 \\ \hline 2 \\ 4 \\ \hline \end{array}$
Number of Solutions	There are two real- number solutions.	There is one real- number solution.	There are no real- number solutions.

How many solutions?

$$2x^2 - 3x + 5 = 0$$

$$b^2 - 4ac = (-3)^2 - 4(2)(5)$$

= -31

Because the discriminant is negative, the equation has no real-number solutions.

How many solutions?

29. $x^2 - 2x + 3 = 0$ **30.** $x^2 + 7x - 5 = 0$ **31.** $x^2 + 3x + 11 = 0$ **32.** $x^2 - 15 = 0$ **33.** $x^2 + 2x = 0$ **34.** $9x^2 + 12x + 4 = 0$

Homework

Two worksheets posted on my website. Only complete the evens for both worksheets.