Warm-Up

1. Check classwork/homework answers around the room
2. Solve the following by factoring:
a) $x^{2}-x=6$
b) $5 x^{2}+11 x+6=0$
c) $8 x=x^{2}$
d) $x^{2}=100$

Hidden Figures Due Dates

- 21-23 due March 26 (TUESDAY) \rightarrow Book completed!

When we have finished the novel, we will watch the movie!

Unit Map - Quadratics

Fuesday, 3/12/2019-StandardForm of Graphing Quadraties
Wednesday, 3/13/2019 Half Day, HF Reading Day with Substitute Ms. Krupski
Thursday, 3/14/2019-Quadratic Functions
Friday, $3 / 15 / 2019$ Solving Quadratic Equations by Graphing with Substitute Ms. Mitehell
Alonday, 3/18/2019-Solving Quadratic Equations by Factoring
Fuesday, 3/19/2019-Review Day
Wednesday, 3/20/2019 - The Quadratic Formula
Thursday, 3/21/2019 - Vertex Form
Friday, 3/22/2019- Quadratic Word Problems
Monday, 3/25/2019 - Word Problems Continued (NC Check-Ins) with Substitute Ms. Mitchell Tuesday, 3/26/2019 - Systems of Linear and Quadratic Equations
Wednesday, 3/27/2019 - Review Day
Thursday, 3/28/2019 - Test Day
Friday, 3/29/2019 - Begin watching Hidden Figures

The Quadratics Test will be the first grade of the 4th

Quarter.

Solving Quadratic

 Equations with the Quadratic Formula3/20/2019

The solutions of a quadratic equation of the form $a x^{2}+b x+c=0$ are given by the following formula:

The Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Key Concept Quadratic Formula

Algebra

If $a x^{2}+b x+c=0$, and $a \neq 0$, then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example
Suppose $2 x^{2}+3 x-5=0$. Then $a=2, b=3$, and $c=-5$. Therefore

$$
x=\frac{-(3) \pm \sqrt{(3)^{2}-4(2)(-5)}}{2(2)}
$$

Here's Why It Works If you complete the square for the general equation

 $a x^{2}+b x+c=0$, you can derive the quadratic formula.Step 1 Write $a x^{2}+b x+c=0$ so the coefficient of x^{2} is 1 .

$$
\begin{aligned}
a x^{2}+b x+c & =0 \\
x^{2}+\frac{b}{a} x+\frac{c}{a} & =0 \quad \text { Divide each side by } a
\end{aligned}
$$

Step 2 Complete the square.

$$
\begin{aligned}
x^{2}+\frac{b}{a} x & =-\frac{c}{a} & & \text { Subtract } \frac{c}{a} \text { from each side. } \\
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2} & =-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2} & & \text { Add }\left(\frac{b}{2 a}\right)^{2} \text { to each side. } \\
\left(x+\frac{b}{2 a}\right)^{2} & =-\frac{c}{a}+\frac{b^{2}}{4 a^{2}} & & \text { Write the left side as a square. } \\
\left(x+\frac{b}{2 a}\right)^{2} & =-\frac{4 a c}{4 a^{2}}+\frac{b^{2}}{4 a^{2}} & & \text { Multiply }-\frac{c}{a} \text { by } \frac{4 a}{4 a} \text { to get like denominators. } \\
\left(x+\frac{b}{2 a}\right)^{2} & =\frac{b^{2}-4 a c}{4 a^{2}} & & \text { Simplify the right side. }
\end{aligned}
$$

Step 3 Solve the equation for x.

$$
\begin{aligned}
\sqrt{\left(x+\frac{b}{2 a}\right)^{2}} & = \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} & & \text { Take square roots of each side. } \\
x+\frac{b}{2 a} & = \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} & & \text { Simplify the right side. } \\
x & =-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} & & \text { Subtract } \frac{b}{2 a} \text { from each side. } \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & & \text { Simplify. }
\end{aligned}
$$

This step uses the
property $\sqrt{\frac{m}{n}}=\frac{\sqrt{m}}{\sqrt{n}}$, which you will study in Lesson 10-2.

If you are interested in why the quadratic formula works, please see this

What are the solutions of $x^{2}-8=2 x$? Use the quadratic formula.

$$
\begin{array}{ll}
x^{2}-2 x-8=0 & \text { Write the equation in sta } \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \text { Use the quadratic formu } \\
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-8)}}{2(1)} & \text { Substitute } 1 \text { for } a,-2 \mathrm{fa} \\
x=\frac{2 \pm \sqrt{36}}{2} & \text { Simplify. } \\
x=\frac{2+6}{2} & \text { or } \quad x=\frac{2-6}{2}
\end{array} \begin{aligned}
& \text { Write as two equations. } \\
& x=4
\end{aligned} \quad \text { or } \quad x=-2 \quad l \begin{aligned}
& \text { Simplify. }
\end{aligned}
$$

What are the solutions of $2 x^{2}+3 x=5$? Use the quadratic formula to solve.

What are the roots of the equation $x^{2}-4 x=-4$? Use the quadratic formula to solve.
7. $2 x^{2}+5 x+3=0$
10. $3 x^{2}-41 x=-110$
13. $3 x^{2}+19 x=154$
8. $5 x^{2}+16 x-84=0$
11. $18 x^{2}-45 x-50=0$
14. $2 x^{2}-x-120=0$
9. $4 x^{2}+7 x-15=0$
12. $3 x^{2}+44 x=-96$
15. $5 x^{2}-47 x=156$
. A batter strikes a baseball. The equation $y=-0.005 x^{2}+0.7 x+3.5$ models its path, where x is the horizontal distance, in feet, the ball travels and y is the height, in feet, of the ball. How far from the batter will the ball land? Round to the nearest tenth of a foot.

There are many methods for solving a quadratic equation.

Method

Graphing
Square roots
Factoring
Completing the square

Quadratic formula

When to Use

Use if you have a graphing calculator handy.
Use if the equation has no x-term.
Use if you can factor the equation easily.
Use if the coefficient of x^{2} is 1 , but you cannot easily factor the equation.
Use if the equation cannot be factored easily or at all.

Which method(s) would you choose to solve each equation? Explain your reasoning.
(A) $3 x^{2}-9=0$

B $x^{2}-x-30=0$
C $6 x^{2}+13 x-17=0$
D $x^{2}-5 x+3=0$

Square roots; there is no x-term
Factoring; the equation is easily factorable
Quadratic formula, graphing; the equation cannot be factored
Quadratic formula, completing the square, or graphing; the coefficient of the x^{2}-term is 1 , but the equation cannot be factored
E $-16 x^{2}-50 x+21=0 \quad$ Quadratic formula, graphing; the equation cannot be factored easily since the numbers are large

Quadratic equations can have two, one, or no real - number solutions
You can determine how many real - number solutions it has by using the discriminates.

The discriminant is the expression under the radical sign in the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

the discriminant

The discriminant of a quadratic equation can be positive, zero, or negative.

Key Concept Using the Discriminant

Discriminant	$b^{2}-4 a c>0$	$b^{2}-4 a c=0$	$b^{2}-4 a c<0$
Example	$x^{2}-6 x+7=0$ The discriminant is $(-6)^{2}-4(1)(7)=8$, which is positive.	$x^{2}-6 x+9=0$ The discriminant is $(-6)^{2}-4(1)(9)=0$	$x^{2}-6 x+11=0$ The discriminant is $(-6)^{2}-4(1)(11)=-8$, which is negative.
Number of Solutions	There are two realnumber solutions.	There is one realnumber solution.	There are no realnumber solutions.

How many solutions?

$$
2 x^{2}-3 x+5=0
$$

$$
\begin{aligned}
\mathrm{b}^{2}-4 \mathrm{ac} & =(-3)^{2}-4(2)(5) \\
& =-31
\end{aligned}
$$

Because the discriminant is negative, the equation has no real-number solutions.

How many solutions?

29. $x^{2}-2 x+3=0$
30. $x^{2}-15=0$
31. $x^{2}+7 x-5=0$
32. $x^{2}+2 x=0$
33. $x^{2}+3 x+11=0$
34. $9 x^{2}+12 x+4=0$

Homework

Two worksheets posted on my website. Only complete the evens for both worksheets.

