THE BOOK THAT INSPIRED THE FILM

THE AMERICAN DREAM AND THE UNTOLD STORY OF THE BLACK WOMEN MATHEMATICIANS WHO HELPED WIN THE SPACE RACE

HIDDEN

FIGURES

Book and <u>yesterday's</u> <u>classwork</u> on your desk.

MARGOT LEE SHETTERLY

Read in your novels.

Announcements

- Polynomials test Thursday
- Need people to take the Exponents Test 2 still... please schedule with me!
- Lots of absences the past few weeks be sure to make a plan with me!
- Hidden Figures Chapter 9-12 due Monday
 - All are posted. I will continue to post more so you can work ahead if you would like

Hidden Figures Due Dates

- 9-12 due March 4
- 13-16 due March 11
- 17-20 due March 18
- 21-23 due March $25 \rightarrow$ Book completed!

When we have finished the novel, we will watch the movie!

Unit Map - Polynomials

Thursday - Intro to Polynomials (definitions and degrees) & Adding/Subtracting Polynomials Friday - Multiplying and Factoring Monday - Multiplying Binomials Tuesday - Multiplying Special Cases Wednesday - Polynomials Review Thursday - Polynomials Test

Classwork Check

"Special Cases" of Polynomials

2/26/2019

Expanding Monomials

Expand (do not simplify) each of the following: a) (2xy)²
b) (5xyz)³

c) (4x)⁴

The Square of a Binomial: Do NOT distribute an exponent to a binomial!

Simplify the product.

$$(a + b)^2 = (a + b)(a + b)$$

= $a^2 + ab + ba + b^2$ Multiply the binomials.
= $a^2 + 2ab + b^2$ Simplify.

Key Concept The Square of a Binomial

e note

Words The square of a binomial is the square of the first term plus twice the product of the two terms plus the square of the last term.

AlgebraExamples $(a + b)^2 = a^2 + 2ab + b^2$ $(x + 4)^2 = x^2 + 8x + 16$ $(a - b)^2 = a^2 - 2ab + b^2$ $(x - 3)^2 = x^2 - 6x + 9$

Expand, then FOIL or Box the following. a) $(a - b)^2 =$

b) $(a + b)^2 =$

Expand, and then simplify the following: a) $(n - 7)^2 =$

b)
$$(x + 3)^2 =$$

C) (2x + 9)²

d) (3x + 4y)²

Got it? What is the simpler form of each product? a) $(2x + 9)^2$

Exterior Design A square outdoor patio is surrounded by a brick walkway as shown. What is the area of the walkway?

- **Step 1** Find the total area of the patio and walkway. $(x + 6)^2 = x^2 + 2(x)(6) + 6^2$ Square the binomial. $= x^2 + 12x + 36$ Simplify.
- **Step 2** Find the area of the patio. The area of the patio is $x \cdot x$, or x^2 .
- Step 3 Find the area of the walkway.

Area of walkway = Total area - Area of patio

$$= (x^{2} + 12x + 36) - x^{2}$$
 Substitute.
= $(x^{2} - x^{2}) + 12x + 36$ Group like terms.
= $12x + 36$ Simplify.

The area of the walkway is (12x + 36) ft².

Finding the Product of a Sum and Difference What is a simpler form of $(x^3 + 8)(x^3 - 8)$

Think	Write
/rite the original product.	$(x^3 + 8)(x^3 - 8)$
dentify which terms orrespond to a and b in the ule for the product of a sum nd difference.	$a = x^{3}; b = 8$
ubstitute for a and b in ne rule.	$(x^3 + 8)(x^3 - 8) = (x^3)^2 - (8)^2$
implify.	$= x^6 - 64$

Practice: a) (x + 9)(x - 9)

b.
$$(6 + m^2)(6 - m^2)$$
 c. $(3c - 4)(3c + m^2)$

4)

Expanding a Binomial in Vertex Form

What is a simpler form of each product? a) $2(x-6)^2$

b)
$$3(x+2)^2$$
 c) $4(x-1)^2$

What is a simpler form of each product? a) $3(x + 1)^2 + 1$

b)
$$2(x-4)^2 - 5$$
 c) $-4(x-2)^2 + 6$

Finding the Area of Shaded Regions

Find the area of the shaded region

2x + 5

Test Information

- 30 questions
- Multiple choice
- On your computer
- We will have a review day tomorrow

Homework

Textbook page 495 #9 - 19 odd, 25-29 odd, 37-43 odd