

Book on your desk.

We will use our calculators in class today.

Read in your novels.

Announcements

Exponents Test 2 Corrections are due on Friday
HF Chapters 17-20 are due Monday. We are getting close to the end of the book!

Hidden Figures Due Dates

- 17-20 due March 18
- 21-23 due March $25 \rightarrow$ Book completed!

When we have finished the novel, we will watch the movie!

Unit Map - Quadratics

Tuesday, 3/12/2019 - Standard Form of Graphing Quadratics

Wednesday, 3/13/2019-Half-Day, HF Reading Day with Substitute Ms. Krupski
Thursday, 3/14/2019-Quadratic Functions
Friday, 3/15/2019 - Solving Quadratic Equations by Graphing with Substitute Ms. Mitchell Monday, 3/18/2019 - Solving Quadratic Equations by Factoring
Tuesday, 3/19/2019 - Solving Quadratic Equations by Completing the Square
Wednesday, 3/20/2019 - The Quadratic Formula
Thursday, 3/21/2019-Vertex Form
Friday, 3/22/2019-Quadratic Word Problems
Monday, 3/25/2019 - Word Problems Continued (NC Check-Ins) with Substitute Ms. Mitchell
Tuesday, 3/26/2019 - Systems of Linear and Quadratic Equations
Wednesday, 3/27/2019 - Review Day
Thursday, 3/28/2019 - Test Day
Friday, 3/29/2019-Begin watching Hidden Figures

The Quadratics Test will be the first grade of the 4th Quarter.

Standard Form

 of Graphing$3 / 12 / 2019$

A quadratic function is a type of nonlinear function that models certain situations where the rate of change is not constant. The graph of a quadratic function is a symmetric curve with the highest or lowest point corresponding to the maximum or minimum value.

A quadratic function is a type of nonlinear function that models certain situations where the rate of change is not constant. The graph of a quadratic function is a symmetric curve with the highest or lowest point corresponding to the maximum or minimum value.

Key Concept Standard Form of a Quadratic Function

A quadratic function is a function that can be written in the form $y=a x^{2}+b x+c$, where $a \neq 0$. This form is called the standard form of a quadratic function.

$$
\text { Examples } y=3 x^{2} \quad y=x^{2}+9 \quad y=x^{2}-x-2
$$

A quadratic function is a type of nonlinear function that models certain situations where the rate of change is not constant. The graph of a quadratic function is a symmetric curve with the highest or lowest point corresponding to the maximum or minimum value.

Key Concept Standard Form of a Quadratic Function

A quadratic function is a function that can be written in the form $y=a x^{2}+b x+c$, where $a \neq 0$. This form is called the standard form of a quadratic function.

$$
\text { Examples } y=3 x^{2} \quad y=x^{2}+9 \quad y=x^{2}-x-2
$$

Standard Form: y =

Important Vocabulary

Y-Intercept \rightarrow Where the graph crosses the y-axis
X-Intercept (root, zero, solution) \rightarrow Where the graph crosses the x-axis. These are the solutions to the quadratic. They are also called roots or zeros of the equation.

Vertex \rightarrow The highest or lowest point of the parabola
Axis of Symmetry \rightarrow The line that divides the parabola into two matching halves. Each side matches exactly

Parabola \rightarrow The graph of the quadratic function which is in the shape of a U

Check your understanding

Identify each of the vocabulary words on the graph shown to the left:

1) Y-Intercept
2) X-Intercept
3) Vertex
4) Axis of Symmetry
5) Parabola

The Quadratic Parent Function

The simplest quadratic function is $f(x)=x^{2}$ or $y=x^{2}$
This is called the quadratic parent function.

The graph of a quadratic function is a U-shaped curve called a parabola. The parabola with equation $y=x^{2}$ is shown at the right.

You can fold a parabola so that the two sides match exactly. This property is called symmetry. The fold or line that divides the parabola into two matching halves is called the axis of symmetry.

Identifying a Vertex

$a x^{2}+b x+c$
Parabola opens upward
Vertex is the minimum point or the lowest point of the parabola

Find the vertex:
$-a x^{2}+b x+c$
Parabola opens downward
Vertex is the maximum point or the highest point of the parabola

Find the vertex:

Graphing $y=a x^{2}$

You can use the fact that a parabola is symmetric to graph it quickly.

- Find the coordinates of the vertex and several point on one side of the vertex
- Reflect the points across the axis of symmetry

Example 2: Graph $y=\alpha x^{2}$
Graph the function $y=\frac{1}{3} x^{2}$. Make a table of values. What are the domain and range?

x	$y=\frac{1}{3} x^{2}$	(x, y)
0	$\frac{1}{3}(0)^{2}$	0
$(0,0)$		
3	$\frac{1}{3}(3)^{2}$	3
$(3,3)$		
6	$\frac{1}{3}(6)^{2}$	12

The domain is all real numbers. The range is $y \geq 0$.

Comparing widths of parabolas

The coefficient of the x^{2} - term in a quadratic function affects the width of a parabola as well as the direction in which it opens.

- Larger numbers stretch the graph so it gets closer together
- Fractions makes the graph wider.
- Negative sign flips the graph.

Use the graphs below. What is the order, from widest to narrowest, of the graphs of the quadratic functions $f(x)=-4 x^{2}, f(x)=\frac{1}{4} x^{2}$, and $f(x)=x^{2}$?

$$
f(x)=-4 x^{2}
$$

$$
f(x)=x^{2}
$$

$$
f(x)=\frac{1}{4} x^{2}
$$

Graphing $y=a x^{2}+c$

The y-axis is the axis of symmetry for graphs of functions $y=a x^{2}+c$. The c translates the graph up or down.
How is the graph of $y=2 x^{2}+3$ different from the graph of $y=2 x^{2}$?

x	$y=2 x^{2}$	$y=2 x^{2}+3$
$=2$	8	11
$=1$	2	5
0	0	3
1	2	5
2	8	11

How do we use quadratics?

As an object falls, its speed continues to increase, so its height above the ground decreases at a faster and faster rate. Ignoring air resistance, you can model the object's height with the function $h=-16 t^{2}+c$. the height h is in feet, the time t is in seconds, and the object's initial height c is in feet.

How do we use quadratics?

Example 5: An acorn drops from a tree branch 20 ft . above the ground. The function $\mathrm{h}=-16 \dagger^{2}+20$ gives the height h of the acorn (in feet) after t seconds. What is the graph of this quadratic function? At about what time does the acorn hit the ground?

Know

- The function for the acorn's height
- The initial height is 20 ft

The function's graph and the time the acorn hits the ground

Plan
Use a table of values to graph the function. Use the graph to estimate when the acorn hits the ground.

t	$h=-16 t^{2}+20$
0	20
0.5	16
1	4
1.5	-16

How do we use quadratics?

Example 5: An acorn drops from a tree branch 20 ft . above the ground. The function $\mathrm{h}=-16 \mathrm{t}^{2}+20$ gives the height h of the acorn (in feet) after \dagger seconds. What is the graph of this quadratic function? At about what time does the acorn hit the ground?

Know

- The function for the acorn's height
- The initial height is 20 ft

Need
The function's graph and the time the acorn hits the ground

Plan
Use a table of values to graph the function. Use the graph to estimate when the acorn hits the ground.

t	$h=-16 t^{2}+20$
0	20
0.5	16
1	4
1.5	-16

Graph the function using the first three ordered pairs from the table. Do not plot $(1.5,-16)$ because height cannot be negative.

How do we use quadratics?

Example 5: An acorn drops from a tree branch 20 ft . above the ground. The function $\mathrm{h}=-16 \dagger^{2}+20$ gives the height h of the acorn (in feet) after \dagger seconds. What is the graph of this quadratic function? At about what time does the acorn hit the ground?

Know

- The function for the acorn's height
- The initial height is 20 ft

Need
The function's graph and the time the acorn hits the ground

Plan

Use a table of values to graph the function. Use the graph to estimate when the acorn hits the ground.

t	$h=-16 t^{2}+20$
0	20
0.5	16
1	4
1.5	-16

Graph the function using the first three ordered pairs from the table. Do not plot $(1.5,-16)$ because height cannot be negative.

The acorn hits the ground when its height above the ground is 0 ft . From the graph, you can see that the acorn hits the ground after slightly more than 1 s .

Practice

Suppose an acorn drops from a tree branch 70ft. above the ground. The function $h=-16 t^{2}+70$ gives the height h of the acorn as it falls from the tree to the ground.

What is the graph of the function? About what time would the acorn hit the ground? What is a reasonable domain and range for the original function?

Practice

For a physics experiment, the class drops a golf ball off a bridge toward the pavement below. The bridge is 75 feet high. The function $h=-16 t^{2}+75$ gives the golf ball's height h above the pavement (in feet) after t seconds. Graph the function. How many seconds does it take for the golf ball to hit the pavement?

Calculator Tools

1) Graph a quadratic
a) Let's all graph $y=3 x^{2}+2 x-1$
2) Find the minimum!
a) 2nd \rightarrow Trace \rightarrow minimum
b) Left bound?
c) Right bound?
d) Guess?
3) Find the x-intercept
a) 2nd \rightarrow Trace \rightarrow zero
b) Left bound?
c) Right bound?
d) Guess?

Think About It!

How do you think you would find the maximum of a graph that opens downward?

What does "zero" mean?

Desmos

Sticky Note Wrap-Up

What are your lingering questions or points of confusion? Write them on a sticky note and post it on my back cabinet. We will address them on Monday.

No points of confusion? Try answering this challenge question: How might you use the maximum or minimum vertex in a real life situation? Write your answer on a sticky note and post it on the back of my door.

Homework

Textbook page 538 10-18 even, 26-30, 34-39, 48

