Missing Work Block 1

1. Report Card: Evan, Aarav, Alex, Keely, Henry, Ruby, Lillian, Marissa, Lauren, Noah
2. HF Anticipation Guide: Alex
3. HF Author's Note: Aarav
4. HF Chapter 1: Henry, Lillian, Avery, Marissa, Jack, Noah
5. HF Chapter 2: Allison, Marissa, Ray, Noah
6. HF Chapter 3: Aarav, Henry, Lillian, Allison, Avery, Marissa, Ray, Noah
7. EOC Relooping Problems: Henry, Lillian, Avery, Alan, Marissa,

Missing Work Block 3

1. HF Anticipation Guide: Gabe, Rafael, Petr, Daniel, Immanuel
2. HF Author's Note: Rafael, Cole, Petr, Daniel, Immanuel
3. HF Prologue: Gabe, Rafael, Cole, Petr, Jonathan, Daniel, Immanuel
4. HF Chapter 1: Keion, Aboud, Gabe, Carson, Cole, Petr, Italia, Jonathan, Ryan, Daniel, Immanuel
5. HF Chapter 2: Keion, Aboud, Gabe, Rafael, Cole, Petr, Skyler, Jonathan, Ryan, Daniel, Immanuel, Alliyah, Kendall W.
6. HF Chapter 3: Keion, Aboud, Gabe, Rafael, Sydney, Cole, Petr, Skyler, Ryan, Daniel, Immanuel, Alliyah, Kendall W.
7. EOC Relooping Problems: Aboud, Rafael, Gabe, Cole, Danniel, Immanuel,

Missing Work Block 4

1. HF Anticipation Guide: Tyler C, Jackson, Carter P, Ava
2. HF Author's Note: Tyler C, Ian, Daniel, Carter P, Ava
3. HF Prologue: Tyler C, Andrew, Cole, Jackson, Carter P, Ava
4. HF Chapter 1: Chloe, Tyler C, Cole, Ian, Carter P
5. HF Chapter 2: Kirkland, Aleena, Tyler C, McKenzie, Andrew, Sophia H, Maddux, Carter P, Ava, Jacob, Steph, Tyler W
6. HF Chapter 3: Kirkland, Aleena, Tyler C, McKenzie, Cole, Sophia H, Carter P, Jacob, Steph, Tyler W
7. EOC Relooping Problems: Add names here during planning

Announcements

Absence on Friday

- Information about Friday's plans

Unit Map

Thursday, 2/7/2019 \rightarrow Transformations of functions Friday, 2/8/2019 \rightarrow Ms. Barger Absent, Hidden Figures reading and work Monday, 2/11/2019 \rightarrow Exponential Growth and Decay Tuesday, 2/12/2019 \rightarrow Compound Interest and Half Life Wednesday, 2/13/2019 \rightarrow Transformations of Exponentials Thursday, 2/14/2019 \rightarrow Scientific Notation converting back and forth Friday, 2/15/2019 \rightarrow Scientific Notation adding and subtracting \& multiplying and dividing
Monday, 2/18/2019 \rightarrow Scientific Notation word problems
Tuesday, 2/19/2019 \rightarrow Review
Wednesday, 2/20/2019 \rightarrow Exponents Test 2

Transforming Exponential Functions

You will learn how to graph transformations of functions.

- vertical shrinking and stretching
- horizontal/vertical shifts
- and reflecting

Parent Graphs

x	$y=x^{2}$
0	0
-1	1
1	1
-2	4
2	4

Parabola

x	$y=\sqrt{x}$
0	0
1	1
4	2

Square Root

x	$y=\|x\|$
0	0
-1	1
1	1
-2	2
2	2

Absolute Value

x	$y=x^{3}$
0	0
-1	-1
1	1

Cubic

Part One: Vertical Stretching and Shrinking Using Parent Graphs
Graphing functions in the form $y=a f(x) . f(x)$ could be $x^{2}, \sqrt{x},|x|$, or x^{3}.
If a is a positive number greater than $1(a>1) \rightarrow$ vertical stretching
If a is a positive number between 0 and $1(0<a<1) \rightarrow$ vertical shrinking
From the parent graph, multiply each y-coordinate by a to help you graph $y=a f(x)$.

Example 1:

Parabola

Parent Table		Multiplied by 2 from the y-coordinates	
x	$y=x^{2}$	x	$y=(2) x^{2}$
0	0	0	± 0
-1	1	-1	2
1	1	1	2
-2	4	-2	8
2	- 4	2	8
Multiplied by $1 / 2$ from the y-coordinates			
x	$y=\left(\frac{1}{2}\right) x^{2}$		
0	0		
-1	1/2		
1	1/2		
-2	2		
2	2		

$y=2 x^{2} \rightarrow$ Multiplied parent y-coordinates by 2 (y-coordinates doubled)
$y=\frac{1}{2} x^{2} \rightarrow$ Multiplied parent y-coordinates by $\frac{1}{2}(y$-coordinates were divided by 2)

Part Two: Reflection About the x-axis Using Parent Graphs
Graphing functions in the form $y=-f(x) . f(x)$ could be $x^{2}, \sqrt{x},|x|$, or x^{3}.
If the function is $y=-f(x)$, then the function is reflected about the x-axis. The negative sign in front of the function reverses the sign of every y-coordinate.

Example 2:

b) $y=-|x|$

Reversed the signs of every
y-coordinate

x	$y=\|x\|$					
0	0					
-1	1					
1	1					
-2	2					
2	2	\quad	x			$y=-\|x\|$
:---:	:---:	:---:	:---:			
0	0					
-1	-1					
1	-1					
-2	-2					
2	-2					

Absolute Value

Part Three: Horizontal Shifts Using Parent Graphs

Graphing functions in the form $y=f(x+h) . f(x)$ could be $x^{2}, \sqrt{x},|x|$, or x^{3}. If the function is $y=f(x+h)$, then the function is shifted h units to the left. Subtract h units from the x-coordinates.
If the function is $y=f(x-h)$, then the function is shifted h units to the right. Add h units to the x-coordinates.

Example 3:

c) $y=(x-3)^{2} \rightarrow$ shifted right 3 units

Added 3 units to the x-coordinates			
x	$y=x^{2}$		
0	0		
-1	1		
1	1		
-2	4		
2	4		

d) $y=(x+3)^{2} \rightarrow$ shifted left 3 units

Subtracted 3 units from the x-coordinates			
x	$y=x^{2}$		
0	0		
-1	1		
1	1		
-2	4		
2	4		

Part Four: Vertical Shifts Using Parent Graphs

Graphing functions in the form $y=f(x)+k . f(x)$ could be $x^{2}, \sqrt{x},|x|$, or x^{3}.
If the function is $y=f(x)+k$, then the function is shifted k units up. Add k units to the y-coordinates.
If the function is $y=f(x)-k$, then the function is shifted k units down.
Subtract k units from the y-coordinates.

Example 4:
e) $y=x^{2}+2 \rightarrow$ shiffed up 2 units

x	$y=x^{2}$			
0	0			
-1	1			
1	1			
-2	4			
2	4	\quad	x	$y=x^{2}+2$
:---:	:---:			
0	2			
-1	3			
1	3			
-2	6			
2	6			

f) $y=x^{2}-2 \rightarrow$ shifted down 2 units

Subtracted 2 units from the

y-coordinates

x	$y=x^{2}$			
0	0			
-1	1			
1	1			
-2	4			
2	4	\quad	x	$y=x^{2}-2$
:---:	:---:			
0	-2			
-1	-1			
1	-1			
-2	2			
2	2			

Part Five: Graphing Functions in the Form $y=-a f(x-h)+k$ Using the Parent Graphs

$$
f(x-h) \text { could be }(x-h)^{2}, \sqrt{x-h},|x-h| \text {, or }(x-h)^{3} .
$$

When graphing functions with several transformations, it's helpful to carry them out using the order of operations (PEMDAS). The following examples show this in five steps, since the given functions include all the transformations explained previously. First, you start with the parent graph. Second, you do the horizontal shift. Third, you do the vertical stretching/shrinking. Fourth, you do the reflection. Fifth, you do the vertical shift. If a function does not include all the transformations, simply carry out the given transformations in the order described above.

Step 1)

Parent graph $\quad y=\sqrt{x}$

Example 5:

Graph $y=-2 \sqrt{x+3}-1$

Step 4)

$y=-2 \sqrt{x+3} \rightarrow$ Reflected about
the x-axis

Reversed the signs of the y-coordinates
$y=-2 \sqrt{x+3}-1 \rightarrow$ Shifted down 1 unit

							110			-	-		
						1							89
													$\times 10$
					V								

Final answer
Subtracted 1 from the y-coordinates

Step 2)

$y=\sqrt{x+3} \rightarrow$ Shifted to the left 3 units

	T						11		-	T	I	T	I
													-
									-				
						-	-	2	3	45	50	7	09
	- 10												
							-10						

Subtracted 3 from the parent x-coordinates

Step 3)
$y=2 \sqrt{x+3} \rightarrow$ Vertically stretched by a factor of 2

Multiplied by 2 from the y-coodinates
(the y -coordinates doubled)

Step 1)

Parent graph $y=x^{3}$

Example 6:

$$
\text { Graph }-\frac{1}{2}(x-4)^{3}+3
$$

Step 4)

$y=-\frac{1}{2}(x-4)^{3} \rightarrow$ Reflected about the x-axis

\square						10						
								,				
												89
$-\times 10$												X. 10

Reversed the signs of the y-coordinates

Step 5)

$y=-\frac{1}{2}(x-4)^{3}+3 \rightarrow$ Shifted up
3 units

Final Answer

Added 3 to the y-coordinates

Step 2)
$y=(x-4)^{3} \rightarrow$ Shifted to the right 4 units

Added 4 to the parent's x-coordinates

Step 3)

$$
\begin{array}{r}
y=\frac{1}{2}(x-4)^{3} \rightarrow \\
\quad \text { Vertically shrunk } \\
\quad \text { by a factor of } \frac{1}{2}
\end{array}
$$

Multiplied the y-coodinates by $\frac{1}{2}$.
(the y-coordinates were divided by 2)

Before you move on, briefly review which transformations affect the x and y-coordinates:

Now, that you know all the transformations performed on functions of the form $y=-a f(x-h)+k$ in which $f(x-h)$ could be $(x-h)^{2}, \sqrt{x-h},|x-h|$, or $(x-h)^{3}$, you should be able to graph the following functions.

Try on your own

1) $y=3(x+1)^{2}$

2) $y=-\frac{1}{2} \sqrt{x-5}$

3) $y=\frac{1}{2}|x+2|-3$

	-	,			Y. 1					
	8.7	- 8	5.4	3-2-1			23	45	50	189
\times	10									x.10

Homework

Transformation of Functions Worksheet (Posted Online)

