1) Know the properties we studied (the foldable). They will be matching on the test.

- 2) True/False. Write out the word for your answer. If false, provide a counterexample.
 - a) Absolute value is always positive
 - b) Two negatives in a row equal a positive
 - c) All rational numbers are real numbers
 - d) All real numbers are rational numbers
 - e) When evaluating expressions, you do exponents before addition
 - f) The commutative property is true for addition and multiplication only
- 3) Simplify the following expressions

a)
$$2^2 + 5 - 12(-3)^2$$

b)
$$[(3 \cdot 7) + 1] \div (18 - 16)$$

4) Evaluate each expression. Show work with steps for full credit.

d) $\frac{2a+b}{3}$ when a = 4 and b = 1a) $\frac{15 \div 3 + 2 \cdot 3}{2(5 + 6)}$ b) $2 \cdot 3^2 \div 3$ C) $\frac{(2\cdot 5)^2+4}{3^2-5}$

5) Be able to perform all operations with integers and show work for your answer.

- g) $\frac{2}{3} \div \frac{1}{5}$ a) -7 + (-8)b) 15 + (-11)h) <u>16</u> c) 17 + (-9) + 10 + (-6)i) $\frac{x^2}{5} \div -4$ d) (-3)(x)(7)e) (-2x)(-4)(x)
- f) $(-3x)^2$

6) Simplify each expression. Show work for full credit.

a) $3x^2 - 4 + 4x^2$ d) $x^{2} - (x + x^{2})$ e) $2x(3-x) + x^2$ b) (6x-1)(-4x)

c)
$$10x + (3x + 2)(-2)$$

- 7) Write a paragraph explaining the order of operations. Use complete sentences.
- 8) Make sure you can classify a number by all sets it falls into. (Real, Rational, Irrational, Integer, Whole, and Natural.

a)
$$-\frac{3}{4}$$
 b) π c) 5 d) $\sqrt{7}$

9) Make sure you can turn written verbal expressions into algebraic expressions.

- a) Five less than the product of nine and a number squared
- b) The quotient of n and the number five